Environmental enrichment may slow cognitive decay possibly acting through an improvement in vascular function. Aim of the study was to assess the effects of a 7-month cognitive, social, and physical training program on cognitive and vascular function in patients with mild cognitive impairment. In a single-center, randomized, parallelgroup study, 113 patients (age, 65-89 years) were randomized to multidomain training (n=55) or usual care (n=58). All participants underwent neuropsychological tests and vascular evaluation, including brachial artery flow-mediated dilation, carotid-femoral pulse wave velocity, carotid distensibility, and assessment of circulating hematopoietic CD34+ and endothelial progenitor cells. At study entry, an age-matched control group (n=45) was also studied. Compared with controls, patients had at study entry a reduced flow-mediated dilation (2.97±2.14% versus 3.73±2.06%; P=0.03) and hyperemic stimulus (shear rate area under the curve, 19.1±15.7 versus 25.7±15.1×10-3; P=0.009); only the latter remained significant after adjustment for confounders (P=0.03). Training improved Alzheimer disease assessment scale cognitive (training, 14.0±4.8 to 13.1±5.5; nontraining, 12.1±3.9 to 13.2±4.8; P for interaction visit×training=0.02), flow-mediated dilation (2.82±2.19% to 3.40±1.81%, 3.05±2.08% to 2.24±1.59%; P=0.006; P=0.023 after adjustment for diameter and shear rate area under the curve), and circulating hematopoietic CD34+ cells and prevented the decline in carotid distensibility (18.4±5.3 to 20.0±6.6, 23.9±11.0 to 19.5±7.1 Pa-1; P=0.005). The only clinical predictor of improvement of cognitive function after training was established hypertension. There was no correlation between changes in measures of cognitive and vascular function. In conclusion, a multidomain training program slows cognitive decline, especially in hypertensive individuals. This effect is accompanied by improved systemic endothelial function, mobilization of progenitor CD34+ cells, and preserved carotid distensibility.

Vascular function is improved after an environmental enrichment program the train the brain-mind the vessel study

Cecchetti L;Pietrini P;Ricciardi E;
2018-01-01

Abstract

Environmental enrichment may slow cognitive decay possibly acting through an improvement in vascular function. Aim of the study was to assess the effects of a 7-month cognitive, social, and physical training program on cognitive and vascular function in patients with mild cognitive impairment. In a single-center, randomized, parallelgroup study, 113 patients (age, 65-89 years) were randomized to multidomain training (n=55) or usual care (n=58). All participants underwent neuropsychological tests and vascular evaluation, including brachial artery flow-mediated dilation, carotid-femoral pulse wave velocity, carotid distensibility, and assessment of circulating hematopoietic CD34+ and endothelial progenitor cells. At study entry, an age-matched control group (n=45) was also studied. Compared with controls, patients had at study entry a reduced flow-mediated dilation (2.97±2.14% versus 3.73±2.06%; P=0.03) and hyperemic stimulus (shear rate area under the curve, 19.1±15.7 versus 25.7±15.1×10-3; P=0.009); only the latter remained significant after adjustment for confounders (P=0.03). Training improved Alzheimer disease assessment scale cognitive (training, 14.0±4.8 to 13.1±5.5; nontraining, 12.1±3.9 to 13.2±4.8; P for interaction visit×training=0.02), flow-mediated dilation (2.82±2.19% to 3.40±1.81%, 3.05±2.08% to 2.24±1.59%; P=0.006; P=0.023 after adjustment for diameter and shear rate area under the curve), and circulating hematopoietic CD34+ cells and prevented the decline in carotid distensibility (18.4±5.3 to 20.0±6.6, 23.9±11.0 to 19.5±7.1 Pa-1; P=0.005). The only clinical predictor of improvement of cognitive function after training was established hypertension. There was no correlation between changes in measures of cognitive and vascular function. In conclusion, a multidomain training program slows cognitive decline, especially in hypertensive individuals. This effect is accompanied by improved systemic endothelial function, mobilization of progenitor CD34+ cells, and preserved carotid distensibility.
2018
Cognitive dysfunction; Control groups; Endothelial progenitor cells; Humans; Vascular stiffness; Aged; Aged, 80 and over; Brachial Artery; Brain; Cardiovascular Diseases; Cognitive Dysfunction; Cross-Sectional Studies; Endothelium, Vascular; Exercise Therapy; Female; Humans; Male; Middle Aged; Pulse Wave Analysis; Vascular Stiffness; Vasodilation
File in questo prodotto:
File Dimensione Formato  
HYPERTENSIONAHA.117.10066.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 240.75 kB
Formato Adobe PDF
240.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/12943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
social impact