Detecting the presence of mesoscale structures in complex networks is of primary importance. This is especially true for financial networks, whose structural organization deeply affects their resilience to events like default cascades, shocks propagation, etc. Several methods have been proposed, so far, to detect communities, i.e., groups of nodes whose internal connectivity is significantly large. Communities, however do not represent the only kind of mesoscale structures characterizing real-world networks: other examples are provided by bow-tie structures, core-periphery structures and bipartite structures. Here we propose a novel method to detect statistically significant bimodular structures, i.e., either bipartite or core-periphery ones. It is based on a modification of the surprise, recently proposed for detecting communities. Our variant allows for bimodular nodes partitions to be revealed, by letting links to be placed either 1) within the core part and between the core and the periphery parts or 2) between the layers of a bipartite network. From a technical point of view, this is achieved by employing a multinomial hypergeometric distribution instead of the traditional, binomial hypergeometric one; as in the latter case, this allows a p-value to be assigned to any given (bi)partition of the nodes. To illustrate the performance of our method, we report the results of its application to several real-world networks, including social, economic and financial ones.

Detecting core-periphery structures by surprise

de Jeude, J. van Lidth;Caldarelli, G.;Squartini, T.
2019-01-01

Abstract

Detecting the presence of mesoscale structures in complex networks is of primary importance. This is especially true for financial networks, whose structural organization deeply affects their resilience to events like default cascades, shocks propagation, etc. Several methods have been proposed, so far, to detect communities, i.e., groups of nodes whose internal connectivity is significantly large. Communities, however do not represent the only kind of mesoscale structures characterizing real-world networks: other examples are provided by bow-tie structures, core-periphery structures and bipartite structures. Here we propose a novel method to detect statistically significant bimodular structures, i.e., either bipartite or core-periphery ones. It is based on a modification of the surprise, recently proposed for detecting communities. Our variant allows for bimodular nodes partitions to be revealed, by letting links to be placed either 1) within the core part and between the core and the periphery parts or 2) between the layers of a bipartite network. From a technical point of view, this is achieved by employing a multinomial hypergeometric distribution instead of the traditional, binomial hypergeometric one; as in the latter case, this allows a p-value to be assigned to any given (bi)partition of the nodes. To illustrate the performance of our method, we report the results of its application to several real-world networks, including social, economic and financial ones.
File in questo prodotto:
File Dimensione Formato  
1810.04717.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 9.08 MB
Formato Adobe PDF
9.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/13627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
social impact