Several studies in recent times have linked gut microbiome (GM) diversity to the pathogenesis of cancer and its role in disease progression through immune response, inflammation and metabolism modulation. This study focused on the use of network analysis and weighted gene co-expression network analysis (WGCNA) to identify the biological interaction between the gut ecosystem and its metabolites that could impact the immunotherapy response in non-small cell lung cancer (NSCLC) patients undergoing second-line treatment with anti-PD1. Metabolomic data were merged with operational taxonomic units (OTUs) from 16S RNA-targeted metagenomics and classified by chemometric models. The traits considered for the analyses were: (i) condition: disease or control (CTRLs), and (ii) treatment: responder (R) or non-responder (NR). Network analysis indicated that indole and its derivatives, aldehydes and alcohols could play a signaling role in GM functionality. WGCNA generated, instead, strong correlations between short-chain fatty acids (SCFAs) and a healthy GM. Furthermore, commensal bacteria such as Akkermansia muciniphila, Rikenellaceae, Bacteroides, Peptostreptococcaceae, Mogibacteriaceae and Clostridiaceae were found to be more abundant in CTRLs than in NSCLC patients. Our preliminary study demonstrates that the discovery of microbiota-linked biomarkers could provide an indication on the road towards personalized management of NSCLC patients.

Network analysis of gut microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer

Gili T.;
2020-01-01

Abstract

Several studies in recent times have linked gut microbiome (GM) diversity to the pathogenesis of cancer and its role in disease progression through immune response, inflammation and metabolism modulation. This study focused on the use of network analysis and weighted gene co-expression network analysis (WGCNA) to identify the biological interaction between the gut ecosystem and its metabolites that could impact the immunotherapy response in non-small cell lung cancer (NSCLC) patients undergoing second-line treatment with anti-PD1. Metabolomic data were merged with operational taxonomic units (OTUs) from 16S RNA-targeted metagenomics and classified by chemometric models. The traits considered for the analyses were: (i) condition: disease or control (CTRLs), and (ii) treatment: responder (R) or non-responder (NR). Network analysis indicated that indole and its derivatives, aldehydes and alcohols could play a signaling role in GM functionality. WGCNA generated, instead, strong correlations between short-chain fatty acids (SCFAs) and a healthy GM. Furthermore, commensal bacteria such as Akkermansia muciniphila, Rikenellaceae, Bacteroides, Peptostreptococcaceae, Mogibacteriaceae and Clostridiaceae were found to be more abundant in CTRLs than in NSCLC patients. Our preliminary study demonstrates that the discovery of microbiota-linked biomarkers could provide an indication on the road towards personalized management of NSCLC patients.
2020
Anti-PD1 immune checkpoint inhibitor
Betweenness centrality
Clustering coefficient
Communities
Gut microbiome
Metabolite
Network analysis
Non-small cell lung cancer (NSCLC)
Operational taxonomic unit (OTU)
Weighted gene co-expression network analysis (WGCNA)
File in questo prodotto:
File Dimensione Formato  
ijms-21-08730-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/16963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
social impact