A novel multi-scale finite element formulation for contact mechanics between nominally smooth but microscopically rough surfaces is herein proposed. The approach integrates the interface finite element method (FEM) for modelling interface interactions at the macro-scale with a boundary element method (BEM) for the solution of the contact problem at the micro-scale. The BEM is used at each integration point to determine the normal contact traction and the normal contact stiffness, allowing to take into account any desirable kind of rough topology, either real, e.g. obtained from profilometric data, or artificial, evaluated with the most suitable numerical or analytical approach. Different numerical strategies to accelerate coupling between FEM and BEM are discussed in relation to a selected benchmark test.
A multi-scale FEM-BEM formulation for contact mechanics between rough surfaces
Jacopo Bonari
Investigation
;Maria R. MarulliInvestigation
;Marco PaggiInvestigation
2020-01-01
Abstract
A novel multi-scale finite element formulation for contact mechanics between nominally smooth but microscopically rough surfaces is herein proposed. The approach integrates the interface finite element method (FEM) for modelling interface interactions at the macro-scale with a boundary element method (BEM) for the solution of the contact problem at the micro-scale. The BEM is used at each integration point to determine the normal contact traction and the normal contact stiffness, allowing to take into account any desirable kind of rough topology, either real, e.g. obtained from profilometric data, or artificial, evaluated with the most suitable numerical or analytical approach. Different numerical strategies to accelerate coupling between FEM and BEM are discussed in relation to a selected benchmark test.File | Dimensione | Formato | |
---|---|---|---|
manuscript_CM.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
6.37 MB
Formato
Adobe PDF
|
6.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.