The study of dreams represents a crucial intersection between philosophical, psychological, neuroscientific, and clinical interests. Importantly, one of the main sources of insight into dreaming activity are the (oral or written) reports provided by dreamers upon awakening from their sleep. Classically, two main types of information are commonly extracted from dream reports: structural and semantic, content-related information. Extracted structural information is typically limited to the simple count of words or sentences in a report. Instead, content analysis usually relies on quantitative scores assigned by two or more (blind) human operators through the use of predefined coding systems. Within this review, we will show that methods borrowed from the field of linguistic analysis, such as graph analysis, dictionary-based content analysis, and distributional semantics approaches, could be used to complement and, in many cases, replace classical measures and scales for the quantitative structural and semantic assessment of dream reports. Importantly, these methods allow the direct (operator-independent) extraction of quantitative information from language data, hence enabling a fully objective and reproducible analysis of conscious experiences occurring during human sleep. Most importantly, these approaches can be partially or fully automatized and may thus be easily applied to the analysis of large datasets.

The Language of Dreams: Application of Linguistics-Based Approaches for the Automated Analysis of Dream Experiences

Elce, Valentina;Handjaras, Giacomo;Bernardi, Giulio
2021

Abstract

The study of dreams represents a crucial intersection between philosophical, psychological, neuroscientific, and clinical interests. Importantly, one of the main sources of insight into dreaming activity are the (oral or written) reports provided by dreamers upon awakening from their sleep. Classically, two main types of information are commonly extracted from dream reports: structural and semantic, content-related information. Extracted structural information is typically limited to the simple count of words or sentences in a report. Instead, content analysis usually relies on quantitative scores assigned by two or more (blind) human operators through the use of predefined coding systems. Within this review, we will show that methods borrowed from the field of linguistic analysis, such as graph analysis, dictionary-based content analysis, and distributional semantics approaches, could be used to complement and, in many cases, replace classical measures and scales for the quantitative structural and semantic assessment of dream reports. Importantly, these methods allow the direct (operator-independent) extraction of quantitative information from language data, hence enabling a fully objective and reproducible analysis of conscious experiences occurring during human sleep. Most importantly, these approaches can be partially or fully automatized and may thus be easily applied to the analysis of large datasets.
dreaming
graph analysis
word embedding
semantics
File in questo prodotto:
File Dimensione Formato  
clockssleep-03-00035.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 321.08 kB
Formato Adobe PDF
321.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11771/19017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact