Sleep spindles of non-REM sleep are transient, waxing-and-waning 10–16 Hz EEG oscillations, whose cortical synchronization depends on the engagement of thalamo-cortical loops. However, previous studies in animal models lacking the corpus callosum due to agenesis or total callosotomy and in humans with agenesis of the corpus callosum suggested that cortico-cortical connections may also have a relevant role in cortical (inter-hemispheric) spindle synchronization. Yet, most of these works did not provide direct quantitative analyses to support their observations. By studying a rare sample of callosotomized, split-brain patients, we recently demonstrated that the total resection of the corpus callosum is associated with a significant reduction in the inter-hemispheric propagation of non-REM slow waves. Interestingly, sleep spindles are often temporally and spatially grouped around slow waves (0.5–4 Hz), and this coordination is thought to have an important role in sleep-dependent learning and memory consolidation. Given these premises, here we set out to investigate whether total callosotomy may affect the generation and spreading of sleep spindles, as well as their coupling with sleep slow waves. To this aim, we analysed overnight high-density EEG recordings (256 electrodes) collected in five patients who underwent total callosotomy due to drug-resistant epilepsy (age 40–53, two females), three non-callosotomized neurological patients (age 44–66, two females), and in a sample of 24 healthy adult control subjects (age 20–47, 13 females). Individual sleep spindles were automatically detected using a validated algorithm and their properties and topographic distributions were computed. All analyses were performed with and without a regression-based adjustment accounting for inter-subject age differences. The comparison between callosotomized patients and healthy subjects did not reveal systematic variations in spindle density, amplitude or frequency. However, callosotomized patients were characterized by a reduced spindle duration, which could represent the result of a faster desynchronization of spindle activity across cortical areas of the two hemispheres. In contrast with our previous findings regarding sleep slow waves, we failed to detect in callosotomized patients any clear, systematic change in the inter-hemispheric synchronization of sleep spindles. In line with this, callosotomized patients were characterized by a reduced extension of the spatial association between temporally coupled spindles and slow waves. Our findings are consistent with a dependence of spindles on thalamo-cortical rather than cortico-cortical connections in humans, but also revealed that, despite their temporal association, slow waves and spindles are independently regulated in terms of topographic expression.

Role of corpus callosum in sleep spindles synchronization and coupling with slow waves

Bernardi Giulio
Investigation
;
Avvenuti Giulia
Investigation
;
Ricciardi Emiliano
Supervision
;
2021

Abstract

Sleep spindles of non-REM sleep are transient, waxing-and-waning 10–16 Hz EEG oscillations, whose cortical synchronization depends on the engagement of thalamo-cortical loops. However, previous studies in animal models lacking the corpus callosum due to agenesis or total callosotomy and in humans with agenesis of the corpus callosum suggested that cortico-cortical connections may also have a relevant role in cortical (inter-hemispheric) spindle synchronization. Yet, most of these works did not provide direct quantitative analyses to support their observations. By studying a rare sample of callosotomized, split-brain patients, we recently demonstrated that the total resection of the corpus callosum is associated with a significant reduction in the inter-hemispheric propagation of non-REM slow waves. Interestingly, sleep spindles are often temporally and spatially grouped around slow waves (0.5–4 Hz), and this coordination is thought to have an important role in sleep-dependent learning and memory consolidation. Given these premises, here we set out to investigate whether total callosotomy may affect the generation and spreading of sleep spindles, as well as their coupling with sleep slow waves. To this aim, we analysed overnight high-density EEG recordings (256 electrodes) collected in five patients who underwent total callosotomy due to drug-resistant epilepsy (age 40–53, two females), three non-callosotomized neurological patients (age 44–66, two females), and in a sample of 24 healthy adult control subjects (age 20–47, 13 females). Individual sleep spindles were automatically detected using a validated algorithm and their properties and topographic distributions were computed. All analyses were performed with and without a regression-based adjustment accounting for inter-subject age differences. The comparison between callosotomized patients and healthy subjects did not reveal systematic variations in spindle density, amplitude or frequency. However, callosotomized patients were characterized by a reduced spindle duration, which could represent the result of a faster desynchronization of spindle activity across cortical areas of the two hemispheres. In contrast with our previous findings regarding sleep slow waves, we failed to detect in callosotomized patients any clear, systematic change in the inter-hemispheric synchronization of sleep spindles. In line with this, callosotomized patients were characterized by a reduced extension of the spatial association between temporally coupled spindles and slow waves. Our findings are consistent with a dependence of spindles on thalamo-cortical rather than cortico-cortical connections in humans, but also revealed that, despite their temporal association, slow waves and spindles are independently regulated in terms of topographic expression.
spindle, non-REM, sleep, corpus callosum, connectivity
File in questo prodotto:
File Dimensione Formato  
fcab108.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 896.62 kB
Formato Adobe PDF
896.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11771/19839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact