Chemical reaction networks are a popular formalism for modeling biological processes which supports both a deterministic and a stochastic interpretation based on ordinary differential equations and continuous-time Markov chains, respectively. In most cases, these models do not enjoy analytical solution, thus typically requiring expensive computational methods based on numerical solvers or stochastic simulations. Exact model reduction techniques can be used as an aid to lower the analysis cost by providing reduced networks that preserve the dynamics of interest to the modeler without incurring any approximation error. We hereby consider a family of techniques for both deterministic and stochastic networks which are based on equivalence relations over the species in the network, leading to a coarse graining which provides the exact aggregate time-course evolution for each equivalence class. We present a large-scale empirical assessment on the BioModels repository by measuring their compression capability over 579 models. Through a number of selected case studies, we also show their ability in yielding physically interpretable reductions that can reveal dynamical patterns of the bio-molecular processes under consideration, independently of the values of the kinetic parameters used in the models.

A large-scale assessment of exact lumping of quantitative models in the BioModels repository

Tribastone M.;
2021-01-01

Abstract

Chemical reaction networks are a popular formalism for modeling biological processes which supports both a deterministic and a stochastic interpretation based on ordinary differential equations and continuous-time Markov chains, respectively. In most cases, these models do not enjoy analytical solution, thus typically requiring expensive computational methods based on numerical solvers or stochastic simulations. Exact model reduction techniques can be used as an aid to lower the analysis cost by providing reduced networks that preserve the dynamics of interest to the modeler without incurring any approximation error. We hereby consider a family of techniques for both deterministic and stochastic networks which are based on equivalence relations over the species in the network, leading to a coarse graining which provides the exact aggregate time-course evolution for each equivalence class. We present a large-scale empirical assessment on the BioModels repository by measuring their compression capability over 579 models. Through a number of selected case studies, we also show their ability in yielding physically interpretable reductions that can reveal dynamical patterns of the bio-molecular processes under consideration, independently of the values of the kinetic parameters used in the models.
2021
Chemical reaction networks
Equivalence relations
Model reduction
File in questo prodotto:
File Dimensione Formato  
cmsb19tcs.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 524.59 kB
Formato Adobe PDF
524.59 kB Adobe PDF Visualizza/Apri
1-s2.0-S0304397521003716-main.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/20859
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact