In this work, a thermodynamically consistent framework for coupled thermo-mechanical simulations for thin-walled structures with the presence of cohesive interfaces is proposed. Regarding the shell formulation, a solid shell parametrization scheme is adopted, which is equipped with the mixed Enhanced Assumed Strain (EAS) method to alleviate Poisson and volumetric locking pathologies. It is further combined with the Assumed Natural Strain (ANS) method leading to a locking-free thermo-mechanical solid shell element using a fully-integrated interpolation scheme. In order to model thermo-mechanical decohesion events in thin-walled structures with imperfect internal boundaries, an interface finite element for geometrical nonlinearities is herein extended to account for the thermal field and thermo-elastic coupling. The computational implementation of the current finite element formulation has been performed as a user element in ABAQUS via user-defined capabilities. The predictability of the model is demonstrated using several representative examples.
Non-linear thermoelastic analysis of thin-walled structures with cohesive-like interfaces relying on the solid shell concept
Pavan Kumar Asur Vijaya Kumar
Membro del Collaboration Group
;Marco PaggiMembro del Collaboration Group
2022-01-01
Abstract
In this work, a thermodynamically consistent framework for coupled thermo-mechanical simulations for thin-walled structures with the presence of cohesive interfaces is proposed. Regarding the shell formulation, a solid shell parametrization scheme is adopted, which is equipped with the mixed Enhanced Assumed Strain (EAS) method to alleviate Poisson and volumetric locking pathologies. It is further combined with the Assumed Natural Strain (ANS) method leading to a locking-free thermo-mechanical solid shell element using a fully-integrated interpolation scheme. In order to model thermo-mechanical decohesion events in thin-walled structures with imperfect internal boundaries, an interface finite element for geometrical nonlinearities is herein extended to account for the thermal field and thermo-elastic coupling. The computational implementation of the current finite element formulation has been performed as a user element in ABAQUS via user-defined capabilities. The predictability of the model is demonstrated using several representative examples.File | Dimensione | Formato | |
---|---|---|---|
Thermo_mechanical_Solid_shell_with_Phase_field.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
3.69 MB
Formato
Adobe PDF
|
3.69 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0168874X21001700-main.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
4.59 MB
Formato
Adobe PDF
|
4.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.