Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution—individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.
Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning
Pavlović, Tomislav
;Azevedo, Flavio;De, Koustav;Riaño-Moreno, Julián C;Maglić, Marina;Gkinopoulos, Theofilos;Donnelly-Kehoe, Patricio Andreas;Payán-Gómez, César;Huang, Guanxiong;Kantorowicz, Jaroslaw;Birtel, Michèle D;Schönegger, Philipp;Capraro, Valerio;Santamaría-García, Hernando;Yucel, Meltem;Ibanez, Agustin;Rathje, Steve;Wetter, Erik;Stanojević, Dragan;van Prooijen, Jan-Willem;Hesse, Eugenia;Elbaek, Christian T;Franc, Renata;Pavlović, Zoran;Mitkidis, Panagiotis;Cichocka, Aleksandra;Gelfand, Michele;Alfano, Mark;Ross, Robert M;Sjåstad, Hallgeir;Nezlek, John B;Cislak, Aleksandra;Lockwood, Patricia;Abts, Koen;Agadullina, Elena;Amodio, David M;Apps, Matthew A J;Aruta, John Jamir Benzon;Besharati, Sahba;Bor, Alexander;Choma, Becky;Cunningham, William;Ejaz, Waqas;Farmer, Harry;Findor, Andrej;Gjoneska, Biljana;Gualda, Estrella;Huynh, Toan L D;Imran, Mostak Ahamed;Israelashvili, Jacob;Kantorowicz-Reznichenko, Elena;Krouwel, André;Kutiyski, Yordan;Laakasuo, Michael;Lamm, Claus;Levy, Jonathan;Leygue, Caroline;Lin, Ming-Jen;Mansoor, Mohammad Sabbir;Marie, Antoine;Mayiwar, Lewend;Mazepus, Honorata;McHugh, Cillian;Olsson, Andreas;Otterbring, Tobias;Packer, Dominic;Palomäki, Jussi;Perry, Anat;Petersen, Michael Bang;Puthillam, Arathy;Rothmund, Tobias;Schmid, Petra C;Stadelmann, David;Stoica, Augustin;Stoyanov, Drozdstoy;Stoyanova, Kristina;Tewari, Shruti;Todosijević, Bojan;Torgler, Benno;Tsakiris, Manos;Tung, Hans H;Umbreș, Radu Gabriel;Vanags, Edmunds;Vlasceanu, Madalina;Vonasch, Andrew J;Zhang, Yucheng;Abad, Mohcine;Adler, Eli;Mdarhri, Hamza Alaoui;Antazo, Benedict;Ay, F Ceren;Ba, Mouhamadou El Hady;Barbosa, Sergio;Bastian, Brock;Berg, Anton;Białek, Michał;Bilancini, Ennio;Bogatyreva, Natalia;Boncinelli, Leonardo;Booth, Jonathan E;Borau, Sylvie;Buchel, Ondrej;de Carvalho, Chrissie Ferreira;Celadin, Tatiana;Cerami, Chiara;Chalise, Hom Nath;Cheng, Xiaojun;Cian, Luca;Cockcroft, Kate;Conway, Jane;Córdoba-Delgado, Mateo A;Crespi, Chiara;Crouzevialle, Marie;Cutler, Jo;Cypryańska, Marzena;Dabrowska, Justyna;Davis, Victoria H;Minda, John Paul;Dayley, Pamala N;Delouvée, Sylvain;Denkovski, Ognjan;Dezecache, Guillaume;Dhaliwal, Nathan A;Diato, Alelie;Paolo, Roberto Di;Dulleck, Uwe;Ekmanis, Jānis;Etienne, Tom W;Farhana, Hapsa Hossain;Farkhari, Fahima;Fidanovski, Kristijan;Flew, Terry;Fraser, Shona;Frempong, Raymond Boadi;Fugelsang, Jonathan;Gale, Jessica;García-Navarro, E Begoña;Garladinne, Prasad;Gray, Kurt;Griffin, Siobhán M;Gronfeldt, Bjarki;Gruber, June;Halperin, Eran;Herzon, Volo;Hruška, Matej;Hudecek, Matthias F C;Isler, Ozan;Jangard, Simon;Jørgensen, Frederik;Keudel, Oleksandra;Koppel, Lina;Koverola, Mika;Kunnari, Anton;Leota, Josh;Lermer, Eva;Li, Chunyun;Longoni, Chiara;McCashin, Darragh;Mikloušić, Igor;Molina-Paredes, Juliana;Monroy-Fonseca, César;Morales-Marente, Elena;Moreau, David;Muda, Rafał;Myer, Annalisa;Nash, Kyle;Nitschke, Jonas P;Nurse, Matthew S;de Mello, Victoria Oldemburgo;Palacios-Galvez, M Soledad;Palomäki, Jussi;Pan, Yafeng;Papp, Zsófia;Pärnamets, Philip;Paruzel-Czachura, Mariola;Perander, Silva;Pitman, Michael;Raza, Ali;Rêgo, Gabriel Gaudencio;Robertson, Claire;Rodríguez-Pascual, Iván;Saikkonen, Teemu;Salvador-Ginez, Octavio;Sampaio, Waldir M;Santi, Gaia Chiara;Schultner, David;Schutte, Enid;Scott, Andy;Skali, Ahmed;Stefaniak, Anna;Sternisko, Anni;Strickland, Brent;Strickland, Brent;Thomas, Jeffrey P;Tinghög, Gustav;Traast, Iris J;Tucciarelli, Raffaele;Tyrala, Michael;Ungson, Nick D;Uysal, Mete Sefa;Van Rooy, Dirk;Västfjäll, Daniel;Vieira, Joana B;von Sikorski, Christian;Walker, Alexander C;Watermeyer, Jennifer;Willardt, Robin;Wohl, Michael J A;Wójcik, Adrian Dominik;Wu, Kaidi;Yamada, Yuki;Yilmaz, Onurcan;Yogeeswaran, Kumar;Ziemer, Carolin-Theresa;Zwaan, Rolf A;Boggio, Paulo Sergio;Whillans, Ashley;Van Lange, Paul A M;Prasad, Rajib;Onderco, Michal;O'Madagain, Cathal;Nesh-Nash, Tarik;Laguna, Oscar Moreda;Kutiyski, Yordan;Kubin, Emily;Gümren, Mert;Fenwick, Ali;Ertan, Arhan S;Bernstein, Michael J;Amara, Hanane;Van Bavel, Jay Joseph
2022-01-01
Abstract
At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution—individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/21898
Citazioni
ND
25
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.