This paper proposes two proximal Newton methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a new continuously differentiable exact penalty function, namely the Composite Moreau Envelope. The first algorithm is based on a standard line search strategy, whereas the second one combines the global efficiency estimates of the corresponding first-order methods, while achieving fast asymptotic convergence rates. Furthermore, they are computationally attractive since each Newton iteration requires the solution of a linear system of usually small dimension.
Proximal newton methods for convex composite optimization
Bemporad A
2013-01-01
Abstract
This paper proposes two proximal Newton methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a new continuously differentiable exact penalty function, namely the Composite Moreau Envelope. The first algorithm is based on a standard line search strategy, whereas the second one combines the global efficiency estimates of the corresponding first-order methods, while achieving fast asymptotic convergence rates. Furthermore, they are computationally attractive since each Newton iteration requires the solution of a linear system of usually small dimension.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.