A visualization scheme for quantum many-body wavefunctions is described that we have termed qubism. Its main property is its recursivity: increasing the number of qubits results in an increase in the image resolution. Thus, the plots are typically fractal. As examples, we provide images for the ground states of commonly used Hamiltonians in condensed matter and cold atom physics, such as Heisenberg or ITF. Many features of the wavefunction, such as magnetization, correlations and criticality, can be visualized as properties of the images. In particular, factorizability can be easily spotted, and a way to estimate the entanglement entropy from the image is provided. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Qubism: Self-similar visualization of many-body wavefunctions

Ibáñez Berganza M.;
2012-01-01

Abstract

A visualization scheme for quantum many-body wavefunctions is described that we have termed qubism. Its main property is its recursivity: increasing the number of qubits results in an increase in the image resolution. Thus, the plots are typically fractal. As examples, we provide images for the ground states of commonly used Hamiltonians in condensed matter and cold atom physics, such as Heisenberg or ITF. Many features of the wavefunction, such as magnetization, correlations and criticality, can be visualized as properties of the images. In particular, factorizability can be easily spotted, and a way to estimate the entanglement entropy from the image is provided. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/25010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
social impact