We assess the robustness of equilibria in generalized Nash equilibrium problems in aggregative form subject to linear coupling constraints affected by uncertainty with a possibly unknown probability distribution. Within a data-driven context, we apply the scenario approach paradigm to provide a-posteriori feasibility certificates for the entire set of generalized Nash equilibria of the game. We then show that assessing the violation probability of such a set only requires one to enumerate the constraints that "shape" it. For the class of aggregative games, this results in solving a feasibility problem on each active facet of the feasibility region, for which we propose a semi-decentralized, structure-preserving algorithm.

On the robustness of equilibria in generalized aggregative games

Fabiani, Filippo;
2020-01-01

Abstract

We assess the robustness of equilibria in generalized Nash equilibrium problems in aggregative form subject to linear coupling constraints affected by uncertainty with a possibly unknown probability distribution. Within a data-driven context, we apply the scenario approach paradigm to provide a-posteriori feasibility certificates for the entire set of generalized Nash equilibria of the game. We then show that assessing the violation probability of such a set only requires one to enumerate the constraints that "shape" it. For the class of aggregative games, this results in solving a feasibility problem on each active facet of the feasibility region, for which we propose a semi-decentralized, structure-preserving algorithm.
2020
978-1-7281-7447-1
File in questo prodotto:
File Dimensione Formato  
On_the_robustness_of_equilibria_in_generalized_aggregative_games.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 870.62 kB
Formato Adobe PDF
870.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2005.09408.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/25775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
social impact