Nests of social insects are an important area for the exchange of food and information among workers. We investigated how the topology of nest chambers (as opposed to nest size or environmental factors) affects the spatial distribution of nestmates and the foraging behavior of Myrmica rubra ant colonies. Colonies were housed in artificial nests, each with same-sized chambers differing in the spatial arrangement of galleries. A highly connected central chamber favored higher occupancy rates and a more homogeneous distribution of ants across chambers. In contrast, a chain of successive chambers led to a more heterogeneous distribution of ants, with the occupancy of a chamber chiefly mediated by its distance to the entrance. Irrespective of nest topology, the entrance chamber housed the largest proportion of ants, often including the queen, which exhibited a preference for staying in densely populated chambers. Finally, we investigated how nest topology influenced nestmate recruitment. Surprisingly, a highly connected chamber in the center of the nest did not promote greater recruitment nor activation of ants. At the onset of foraging, the largest number of moving ants was reached in the topology where the most connected chamber was the nest entrance. Later in the process, we found that a chain of successive chambers was the best topology for promoting ant’s mobilization. Our work demonstrates that nest topology can shape the spatial organization and the collective response of ant colonies, thereby taking part in their adaptative strategies to exploit environmental resources.

The effect of nest topology on spatial organization and recruitment in the red ant Myrmica rubra

Perna A.;
2020-01-01

Abstract

Nests of social insects are an important area for the exchange of food and information among workers. We investigated how the topology of nest chambers (as opposed to nest size or environmental factors) affects the spatial distribution of nestmates and the foraging behavior of Myrmica rubra ant colonies. Colonies were housed in artificial nests, each with same-sized chambers differing in the spatial arrangement of galleries. A highly connected central chamber favored higher occupancy rates and a more homogeneous distribution of ants across chambers. In contrast, a chain of successive chambers led to a more heterogeneous distribution of ants, with the occupancy of a chamber chiefly mediated by its distance to the entrance. Irrespective of nest topology, the entrance chamber housed the largest proportion of ants, often including the queen, which exhibited a preference for staying in densely populated chambers. Finally, we investigated how nest topology influenced nestmate recruitment. Surprisingly, a highly connected chamber in the center of the nest did not promote greater recruitment nor activation of ants. At the onset of foraging, the largest number of moving ants was reached in the topology where the most connected chamber was the nest entrance. Later in the process, we found that a chain of successive chambers was the best topology for promoting ant’s mobilization. Our work demonstrates that nest topology can shape the spatial organization and the collective response of ant colonies, thereby taking part in their adaptative strategies to exploit environmental resources.
2020
Ant
Collective foraging
Nest topology
Network
Queen location
Spatial organization
File in questo prodotto:
File Dimensione Formato  
Vaes_Perna_Detrain2020.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/27346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact