The ability to discover new cell phenotypes by unsupervised clustering of single-cell transcriptomes has revolutionized biology. Currently, there is no principled way to decide whether a cluster of cells contains meaningful subpopulations that should be further resolved. Here, we present phiclust (ϕclust), a clusterability measure derived from random matrix theory that can be used to identify cell clusters with non-random substructure, testably leading to the discovery of previously overlooked phenotypes.
Phiclust: a clusterability measure for single-cell transcriptomics reveals phenotypic subpopulations
Garlaschelli D.;
2022-01-01
Abstract
The ability to discover new cell phenotypes by unsupervised clustering of single-cell transcriptomes has revolutionized biology. Currently, there is no principled way to decide whether a cluster of cells contains meaningful subpopulations that should be further resolved. Here, we present phiclust (ϕclust), a clusterability measure derived from random matrix theory that can be used to identify cell clusters with non-random substructure, testably leading to the discovery of previously overlooked phenotypes.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2022_Phiclust_a clusterability measure for single-cell transcriptomics reveals phenotypic subpopulations.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.