In this paper we prove, first of all, two inequalities for conditional expectations, from which we easily deduce a result by Landers and Rogge. Then we prove convergence results for conditional expectations of the form P_n[f(X_n)|Y_n] to a conditional expectation of the form P[f(X)|Y]. We study, in particular, the case in which the random variables Y_n Y are of the type h_n(X_n), h(X).
Two inequalities for conditional expectations and convergence results for filters
Crimaldi I;
2005-01-01
Abstract
In this paper we prove, first of all, two inequalities for conditional expectations, from which we easily deduce a result by Landers and Rogge. Then we prove convergence results for conditional expectations of the form P_n[f(X_n)|Y_n] to a conditional expectation of the form P[f(X)|Y]. We study, in particular, the case in which the random variables Y_n Y are of the type h_n(X_n), h(X).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Article-CriPra-SPL2005.pdf
non disponibili
Licenza:
Non specificato
Dimensione
230.67 kB
Formato
Adobe PDF
|
230.67 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.