In this paper we prove, first of all, two inequalities for conditional expectations, from which we easily deduce a result by Landers and Rogge. Then we prove convergence results for conditional expectations of the form P_n[f(X_n)|Y_n] to a conditional expectation of the form P[f(X)|Y]. We study, in particular, the case in which the random variables Y_n Y are of the type h_n(X_n), h(X).

Two inequalities for conditional expectations and convergence results for filters

Crimaldi I;
2005-01-01

Abstract

In this paper we prove, first of all, two inequalities for conditional expectations, from which we easily deduce a result by Landers and Rogge. Then we prove convergence results for conditional expectations of the form P_n[f(X_n)|Y_n] to a conditional expectation of the form P[f(X)|Y]. We study, in particular, the case in which the random variables Y_n Y are of the type h_n(X_n), h(X).
2005
Conditional expectation ; Convergence in distribution; Convergence in total variation
File in questo prodotto:
File Dimensione Formato  
Article-CriPra-SPL2005.pdf

non disponibili

Licenza: Non specificato
Dimensione 230.67 kB
Formato Adobe PDF
230.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/3097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact