Recent studies highlighted the advantages of VLC over radio technology for future 6G networks. Thanks to the use of RISs, researchers showed that is possible to guarantee communication secrecy in a VLC network where the adversary location is unknown. However, the problem of authenticating the transmitter with a low-complexity physical layer solution while guaranteeing communication secrecy is still open. This paper proposes a novel multi-RIS architecture to guarantee source authentication, communication secrecy, and integrity in a VLC scenario. We leverage the intuition that a signal transmitted by users located in different positions will undergo a different propagation path to discriminate between the legitimate intended transmitter and an attacker. To increase the channel’s variability and reduce the chances that an adversary might be able to replicate it, we leverage the reconfiguration capabilities of RIS. We derive a statistical characterization of the non-line-of-sight VLC channel, representing the light reflected by RIS elements. Via numerical simulations, we show that the channel variability combined with the configurability capabilities of RISs provide sufficient statistics to authenticate the legitimate transmitter at the physical layer.

Multi-RIS aided VLC Physical Layer Security for 6G Wireless Networks

Simone Soderi
;
2024-01-01

Abstract

Recent studies highlighted the advantages of VLC over radio technology for future 6G networks. Thanks to the use of RISs, researchers showed that is possible to guarantee communication secrecy in a VLC network where the adversary location is unknown. However, the problem of authenticating the transmitter with a low-complexity physical layer solution while guaranteeing communication secrecy is still open. This paper proposes a novel multi-RIS architecture to guarantee source authentication, communication secrecy, and integrity in a VLC scenario. We leverage the intuition that a signal transmitted by users located in different positions will undergo a different propagation path to discriminate between the legitimate intended transmitter and an attacker. To increase the channel’s variability and reduce the chances that an adversary might be able to replicate it, we leverage the reconfiguration capabilities of RIS. We derive a statistical characterization of the non-line-of-sight VLC channel, representing the light reflected by RIS elements. Via numerical simulations, we show that the channel variability combined with the configurability capabilities of RISs provide sufficient statistics to authenticate the legitimate transmitter at the physical layer.
2024
Security, Jamming, Protocols, Wireless LAN
File in questo prodotto:
File Dimensione Formato  
Multi_RIS_aided_VLC_Physical_Layer_Security_IEEE_TMC.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/31018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact