The Chambolle–Pock algorithm (CPA), also known as the primal-dual hybrid gradient method, has gained popularity over the last decade due to its success in solving large-scale convex structured problems. This work extends its convergence analysis for problems with varying degrees of (non)monotonicity, quantified through a so-called oblique weak Minty condition on the associated primal-dual operator. Our results reveal novel stepsize and relaxation parameter ranges which do not only depend on the norm of the linear mapping, but also on its other singular values. In particular, in nonmonotone settings, in addition to the classical stepsize conditions, extra bounds on the stepsizes and relaxation parameters are required. On the other hand, in the strongly monotone setting, the relaxation parameter is allowed to exceed the classical upper bound of two. Moreover, we build upon the recently introduced class of semimonotone operators, providing sufficient convergence conditions for CPA when the individual operators are semimonotone. Since this class of operators encompasses traditional operator classes including (hypo)- and co(hypo)-monotone operators, this analysis recovers and extends existing results for CPA. Tightness of the proposed stepsize ranges is demonstrated through several examples.

Convergence of the Chambolle–Pock algorithm in the absence of monotonicity

Latafat Puya;Patrinos Panagiotis
2025-01-01

Abstract

The Chambolle–Pock algorithm (CPA), also known as the primal-dual hybrid gradient method, has gained popularity over the last decade due to its success in solving large-scale convex structured problems. This work extends its convergence analysis for problems with varying degrees of (non)monotonicity, quantified through a so-called oblique weak Minty condition on the associated primal-dual operator. Our results reveal novel stepsize and relaxation parameter ranges which do not only depend on the norm of the linear mapping, but also on its other singular values. In particular, in nonmonotone settings, in addition to the classical stepsize conditions, extra bounds on the stepsizes and relaxation parameters are required. On the other hand, in the strongly monotone setting, the relaxation parameter is allowed to exceed the classical upper bound of two. Moreover, we build upon the recently introduced class of semimonotone operators, providing sufficient convergence conditions for CPA when the individual operators are semimonotone. Since this class of operators encompasses traditional operator classes including (hypo)- and co(hypo)-monotone operators, this analysis recovers and extends existing results for CPA. Tightness of the proposed stepsize ranges is demonstrated through several examples.
2025
Chambolle–Pock algorithm
Convex/nonconvex optimization
Monotone/nonmonotone inclusions
Primal-dual hybrid gradient
Semimonotone operators
File in questo prodotto:
File Dimensione Formato  
s10957-025-02680-x.pdf

non disponibili

Descrizione: Version of Record
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2312.06540v3.pdf

accesso aperto

Descrizione: Author Accepted Manuscript
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 656.75 kB
Formato Adobe PDF
656.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/34340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact