This paper proposes a linear elastic fracture mechanics approach for the prediction of plate end debonding in rectilinear and curved plated beams. The analytical model results in simple equations, suitable for immediate design use. The load-deflection curve of a plated beam, from the onset of debonding up to the complete separation of the plate, is obtained by controlling the length of the interfacial debonding crack. Its shape clearly shows that snap-back or snap-through instabilities may arise when the beam is loaded under displacement or force control. Analytical predictions are also compared with finite element results based on an interfacial cohesive crack model. It is shown that the predictions of the proposed analytical model match closely the numerical solution, provided that an effective crack length accounting for the size of the fracture process zone is used in the calculations.

### Linear elastic fracture mechanics approach to plate end debonding in rectilinear and curved plated beams

#### Abstract

This paper proposes a linear elastic fracture mechanics approach for the prediction of plate end debonding in rectilinear and curved plated beams. The analytical model results in simple equations, suitable for immediate design use. The load-deflection curve of a plated beam, from the onset of debonding up to the complete separation of the plate, is obtained by controlling the length of the interfacial debonding crack. Its shape clearly shows that snap-back or snap-through instabilities may arise when the beam is loaded under displacement or force control. Analytical predictions are also compared with finite element results based on an interfacial cohesive crack model. It is shown that the predictions of the proposed analytical model match closely the numerical solution, provided that an effective crack length accounting for the size of the fracture process zone is used in the calculations.
##### Scheda breve Scheda completa Scheda completa (DC)
2010
curved beams; finite elements; fracture mechanics; FRP reinforcement; plate end debonding; plated beams; snap-back instability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/20.500.11771/3585`
• ND
• 15