Deep Learning (DL) is effective for classifying encrypted network traffic. However, it requires large amounts of labeled data to feed typical data-hungry training processes. Unfortunately, collecting and labeling rich network-traffic datasets is a complex and costly procedure not always affordable in practice, possibly hindering DL solutions. Few Shot Learning (FSL) aims at tackling this shortcoming, providing means to leverage non-few knowledge to support classification tasks related to traffic with few labeled data available. Although FSL has been largely investigated in other domains (e.g., computer vision), it has been only preliminarily adopted for the classification of encrypted traffic. In this work, we provide a first attempt in adopting FSL for classifying mobile-app encrypted traffic. Specifically, we consider the two most popular FSL paradigms: meta learning (learn to learn) and transfer learning (knowledge transfer from related tasks). We consider a number of variants for each (namely MatchingNet, ProtoNet, RelationNet, MetaOptNet, fo-MAML, ANIL, Fine-Tuning, and Freezing) and provide an empirical assessment of these approaches when adopted for mobile-app traffic classification considering the Mirage-2019 dataset as a test bench. Results show that FSL in mobile-app traffic classification is feasible, reaching satisfactory results (up to 80% F1-score), but leaving room for improvement.

Few shot learning approaches for classifying rare mobile-app encrypted traffic samples

Di Monda Davide;
2023

Abstract

Deep Learning (DL) is effective for classifying encrypted network traffic. However, it requires large amounts of labeled data to feed typical data-hungry training processes. Unfortunately, collecting and labeling rich network-traffic datasets is a complex and costly procedure not always affordable in practice, possibly hindering DL solutions. Few Shot Learning (FSL) aims at tackling this shortcoming, providing means to leverage non-few knowledge to support classification tasks related to traffic with few labeled data available. Although FSL has been largely investigated in other domains (e.g., computer vision), it has been only preliminarily adopted for the classification of encrypted traffic. In this work, we provide a first attempt in adopting FSL for classifying mobile-app encrypted traffic. Specifically, we consider the two most popular FSL paradigms: meta learning (learn to learn) and transfer learning (knowledge transfer from related tasks). We consider a number of variants for each (namely MatchingNet, ProtoNet, RelationNet, MetaOptNet, fo-MAML, ANIL, Fine-Tuning, and Freezing) and provide an empirical assessment of these approaches when adopted for mobile-app traffic classification considering the Mirage-2019 dataset as a test bench. Results show that FSL in mobile-app traffic classification is feasible, reaching satisfactory results (up to 80% F1-score), but leaving room for improvement.
2023
978-1-6654-9427-4
Android Apps
Deep Learning
Encrypted Traffic
Few Shot Learning
Mobile Apps
Traffic Classification
File in questo prodotto:
File Dimensione Formato  
IEEE_INFOCOM_GI_FSL_Mirage.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 304.07 kB
Formato Adobe PDF
304.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/36321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
social impact