We characterize the measurable spaces (Ω,A) such that, for each sub-σ-field G of A and each decreasing filtered family (F_t) of sub-σ-fields of A, with F_t ↓ F_∞, we have F_t ∨ G ↓ F_∞ ∨ G. It follows a characterization of the probability spaces (Ω, A, P) such that, for each sub-σ-field G of A and each decreasing sequence (F_n) of sub-σ-fields of A, with F_n ↓ F_∞, we have ⋂_n (F_n ∨ G) ∼ F_∞ ∨ G (mod P).
Sur l'interversion de l'ordre entre deux opérations sur les tribus
Crimaldi I;
2007-01-01
Abstract
We characterize the measurable spaces (Ω,A) such that, for each sub-σ-field G of A and each decreasing filtered family (F_t) of sub-σ-fields of A, with F_t ↓ F_∞, we have F_t ∨ G ↓ F_∞ ∨ G. It follows a characterization of the probability spaces (Ω, A, P) such that, for each sub-σ-field G of A and each decreasing sequence (F_n) of sub-σ-fields of A, with F_n ↓ F_∞, we have ⋂_n (F_n ∨ G) ∼ F_∞ ∨ G (mod P).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
cri-let-pra-COMP-REND-MATH2007.pdf
non disponibili
Licenza:
Non specificato
Dimensione
128.95 kB
Formato
Adobe PDF
|
128.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.