The thermoviscoelastic rheological properties of ethylene vinyl acetate (EVA) used to embed solar cells have to be accurately described to assess the deformation and the stress state of photovoltaic (PV) modules and their durability. In the present work, considering the stress as dependent on a noninteger derivative of the strain, a two-parameter model is proposed to approximate the power-law relation between the relaxation modulus and time for a given temperature level. Experimental validation with EVA uniaxial relaxation data at different constant temperatures proves the great advantage of the proposed approach over classical rheological models based on exponential solutions.

An accurate thermoviscoelastic rheological model for Ethylene Vinyl Acetate based on fractional calculus

Paggi M;
2015-01-01

Abstract

The thermoviscoelastic rheological properties of ethylene vinyl acetate (EVA) used to embed solar cells have to be accurately described to assess the deformation and the stress state of photovoltaic (PV) modules and their durability. In the present work, considering the stress as dependent on a noninteger derivative of the strain, a two-parameter model is proposed to approximate the power-law relation between the relaxation modulus and time for a given temperature level. Experimental validation with EVA uniaxial relaxation data at different constant temperatures proves the great advantage of the proposed approach over classical rheological models based on exponential solutions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/3691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
social impact