The free volume comprised between rough surfaces in contact governs the fluid/gas transport properties across networks of cracks and the leakage/percolation phenomena in seals. In this study, a fundamental insight into the evolution of the free volume depending on the mean plane separation, on the real contact area and on the applied pressure is gained in reference to fractal surfaces whose contact response is solved using the boundary element method. Particular attention is paid to the effect of the surface fractal dimension and of the surface resolution on the predicted results. The free volume domains corresponding to different threshold levels are found to display fractal spatial distributions whose bounds to their fractal dimensions are theoretically derived. A synthetic formula based on the probability distribution function of the free volumes is proposed to synthetically interpret the numerically observed trends.

Evolution of the free volume between rough surfaces in contact

Paggi M;
2015-01-01

Abstract

The free volume comprised between rough surfaces in contact governs the fluid/gas transport properties across networks of cracks and the leakage/percolation phenomena in seals. In this study, a fundamental insight into the evolution of the free volume depending on the mean plane separation, on the real contact area and on the applied pressure is gained in reference to fractal surfaces whose contact response is solved using the boundary element method. Particular attention is paid to the effect of the surface fractal dimension and of the surface resolution on the predicted results. The free volume domains corresponding to different threshold levels are found to display fractal spatial distributions whose bounds to their fractal dimensions are theoretically derived. A synthetic formula based on the probability distribution function of the free volumes is proposed to synthetically interpret the numerically observed trends.
2015
Rough surfaces; Contact mechanics; Boundary element method; Evolution of the free volume
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/3997
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
social impact