In this paper we deal with the Skorohod representation of a given system of probability measures. More precisely, we give conditions for the existence of a Skorohod representation (X,(X_n)) with the following additional property: for each real number p⩾1 and each real random variable Z in L^p, the conditional expectation E[Z|X_n] converges in L^p to the conditional expectation E[Z|X]
On the behavior of the conditional expectations in Skorohod representation theorem
Crimaldi I
2004-01-01
Abstract
In this paper we deal with the Skorohod representation of a given system of probability measures. More precisely, we give conditions for the existence of a Skorohod representation (X,(X_n)) with the following additional property: for each real number p⩾1 and each real random variable Z in L^p, the conditional expectation E[Z|X_n] converges in L^p to the conditional expectation E[Z|X]File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Article-Cri-SPL2004.pdf
non disponibili
Licenza:
Non specificato
Dimensione
215.08 kB
Formato
Adobe PDF
|
215.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.