The exact performance analysis of large-scale software systems with discrete-state approaches is difficult because of the well-known problem of state-space explosion. This paper considers this problem with regard to the stochastic process algebra PEPA, presenting a deterministic approximation to the underlying Markov chain model based on ordinary differential equations. The accuracy of the approximation is assessed by means of a substantial case study of a distributed multithreaded application.
Scalable Differential Analysis of Process Algebra Models
Tribastone M;
2012-01-01
Abstract
The exact performance analysis of large-scale software systems with discrete-state approaches is difficult because of the well-known problem of state-space explosion. This paper considers this problem with regard to the stochastic process algebra PEPA, presenting a deterministic approximation to the underlying Markov chain model based on ordinary differential equations. The accuracy of the approximation is assessed by means of a substantial case study of a distributed multithreaded application.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.