The exact performance analysis of large-scale software systems with discrete-state approaches is difficult because of the well-known problem of state-space explosion. This paper considers this problem with regard to the stochastic process algebra PEPA, presenting a deterministic approximation to the underlying Markov chain model based on ordinary differential equations. The accuracy of the approximation is assessed by means of a substantial case study of a distributed multithreaded application.

Scalable Differential Analysis of Process Algebra Models

Tribastone M;
2012-01-01

Abstract

The exact performance analysis of large-scale software systems with discrete-state approaches is difficult because of the well-known problem of state-space explosion. This paper considers this problem with regard to the stochastic process algebra PEPA, presenting a deterministic approximation to the underlying Markov chain model based on ordinary differential equations. The accuracy of the approximation is assessed by means of a substantial case study of a distributed multithreaded application.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/4081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
social impact