Besides requiring a good fit of the learned model to the empirical data, machine learning problems usually require such a model to satisfy additional constraints. Their satisfaction can be either imposed a-priori, or checked a-posteriori, once the optimal solution to the learning problem has been determined. In this framework, it is proved in the paper that the optimal solutions to several batch and online regression problems (specifically, the Ordinary Least Squares, Tikhonov regularization, and Kalman filtering problems) satisfy, under certain conditions, either symmetry or antisymmetry constraints, where the symmetry/antisymmetry is defined with respect to a suitable transformation of the data. Computational issues related to the obtained theoretical results (i.e., reduction of the dimensions of the matrices involved in the computations of the optimal solutions) are also described. The results, which are validated numerically, have potential application in machine-learning problems such as pairwise binary classification, learning of preference relations, and learning the weights associated with the directed arcs of a graph under symmetry/antisymmetry constraints.

Symmetry and antisymmetry properties of optimal solutions to regression problems

Gnecco G
2017-01-01

Abstract

Besides requiring a good fit of the learned model to the empirical data, machine learning problems usually require such a model to satisfy additional constraints. Their satisfaction can be either imposed a-priori, or checked a-posteriori, once the optimal solution to the learning problem has been determined. In this framework, it is proved in the paper that the optimal solutions to several batch and online regression problems (specifically, the Ordinary Least Squares, Tikhonov regularization, and Kalman filtering problems) satisfy, under certain conditions, either symmetry or antisymmetry constraints, where the symmetry/antisymmetry is defined with respect to a suitable transformation of the data. Computational issues related to the obtained theoretical results (i.e., reduction of the dimensions of the matrices involved in the computations of the optimal solutions) are also described. The results, which are validated numerically, have potential application in machine-learning problems such as pairwise binary classification, learning of preference relations, and learning the weights associated with the directed arcs of a graph under symmetry/antisymmetry constraints.
File in questo prodotto:
File Dimensione Formato  
s11590-016-1101-x.pdf

non disponibili

Licenza: Non specificato
Dimensione 419.65 kB
Formato Adobe PDF
419.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/6790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
social impact