Gold nanorods are attractive for a range of biomedical applications, such as the photothermal ablation and the photoacoustic imaging of cancer, thanks to their intense optical absorbance in the near-infrared window, low cytotoxicity and potential to home into tumors. However, their delivery to tumors still remains an issue. An innovative approach consists of the exploitation of the tropism of tumor-associated macrophages that may be loaded with gold nanorods in vitro. Here, we describe the preparation and the photoacoustic inspection of cellular vehicles containing gold nanorods. PEGylated gold nanorods are modified with quaternary ammonium compounds, in order to achieve a cationic profile. On contact with murine macrophages in ordinary Petri dishes, these particles are found to undergo massive uptake into endocytic vesicles. Then these cells are embedded in biopolymeric hydrogels, which are used to verify that the stability of photoacoustic conversion of the particles is retained in their inclusion into cellular vehicles. We are confident that these results may provide new inspiration for the development of novel strategies to deliver plasmonic particles to tumors.

Preparation and photoacoustic analysis of cellular vehicles containing gold nanorods

Borri, Claudia;
2016-01-01

Abstract

Gold nanorods are attractive for a range of biomedical applications, such as the photothermal ablation and the photoacoustic imaging of cancer, thanks to their intense optical absorbance in the near-infrared window, low cytotoxicity and potential to home into tumors. However, their delivery to tumors still remains an issue. An innovative approach consists of the exploitation of the tropism of tumor-associated macrophages that may be loaded with gold nanorods in vitro. Here, we describe the preparation and the photoacoustic inspection of cellular vehicles containing gold nanorods. PEGylated gold nanorods are modified with quaternary ammonium compounds, in order to achieve a cationic profile. On contact with murine macrophages in ordinary Petri dishes, these particles are found to undergo massive uptake into endocytic vesicles. Then these cells are embedded in biopolymeric hydrogels, which are used to verify that the stability of photoacoustic conversion of the particles is retained in their inclusion into cellular vehicles. We are confident that these results may provide new inspiration for the development of novel strategies to deliver plasmonic particles to tumors.
2016
Bioengineering; Cellular vehicles; Chitosan; Gold nanorods; Issue 111; Macrophages; Photoacoustic microscopy; Photostability; Plasmonic particles; Animals; Cell Line; Tumor; Humans; Mice; Drug Delivery Systems; Gold; Nanotubes; Neuroscience (all); Chemical Engineering (all); Immunology and Microbiology (all); Biochemistry; Genetics and Molecular Biology (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/6811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
social impact