The Airborne Wind Energy paradigm proposes to generate energy by flying a tethered airfoil across the wind flow at a high velocity. While Airborne Wind Energy enables flight in higher-altitude, stronger wind layers, the extra drag generated by the tether motion imposes a significant limit to the overall system efficiency. To address this issue, two airfoils with a shared tether can reduce overall system drag. A study proposed in Zanon et al. (2013) confirms this claim by showing that, in the considered scenario, the dual-airfoil system is more advantageous than the single-airfoil one. The results computed in Zanon et al. (2013) however, do not model the interaction between the airfoils and the airmass. In this paper, the impact of the airfoil-airmass interaction on the extracted power is studied. As this phenomenon is complex to model, a blade element-momentum approach is proposed and the problem is solved by means of optimal control techniques.
Airborne wind energy: Airfoil-airmass interaction
Zanon M;
2014-01-01
Abstract
The Airborne Wind Energy paradigm proposes to generate energy by flying a tethered airfoil across the wind flow at a high velocity. While Airborne Wind Energy enables flight in higher-altitude, stronger wind layers, the extra drag generated by the tether motion imposes a significant limit to the overall system efficiency. To address this issue, two airfoils with a shared tether can reduce overall system drag. A study proposed in Zanon et al. (2013) confirms this claim by showing that, in the considered scenario, the dual-airfoil system is more advantageous than the single-airfoil one. The results computed in Zanon et al. (2013) however, do not model the interaction between the airfoils and the airmass. In this paper, the impact of the airfoil-airmass interaction on the extracted power is studied. As this phenomenon is complex to model, a blade element-momentum approach is proposed and the problem is solved by means of optimal control techniques.File | Dimensione | Formato | |
---|---|---|---|
awe_airfoil_airmass.pdf
non disponibili
Licenza:
Non specificato
Dimensione
304.94 kB
Formato
Adobe PDF
|
304.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.