Mechanical applications often require a high control frequency to cope with fast dynamics. The control frequency of a nonlinear model predictive controller depends strongly on the symbolic complexity of the equations modeling the system. The symbolic complexity of the model equations for multi-body mechanical systems can often be dramatically reduced by using representations based on non-minimal coordinates, which result in index-3 differential-algebraic equations (DAEs). This paper proposes a general procedure to efficiently treat multi-body mechanical systems in the context of MHE & NMPC using non-minimal coordinate representations, and provides the resulting computational times that can be achieved on a tethered airplane system using code generation.
Nonlinear MPC and MHE for mechanical multi-body systems with application to fast tethered airplanes
Zanon M;
2012-01-01
Abstract
Mechanical applications often require a high control frequency to cope with fast dynamics. The control frequency of a nonlinear model predictive controller depends strongly on the symbolic complexity of the equations modeling the system. The symbolic complexity of the model equations for multi-body mechanical systems can often be dramatically reduced by using representations based on non-minimal coordinates, which result in index-3 differential-algebraic equations (DAEs). This paper proposes a general procedure to efficiently treat multi-body mechanical systems in the context of MHE & NMPC using non-minimal coordinate representations, and provides the resulting computational times that can be achieved on a tethered airplane system using code generation.File | Dimensione | Formato | |
---|---|---|---|
nmpc_mhe_multibody.pdf
non disponibili
Licenza:
Non specificato
Dimensione
815.91 kB
Formato
Adobe PDF
|
815.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.