In this paper, model predictive control (MPC) of differential drive robots is considered. Here, we solve the set point stabilization problem without incorporating stabilizing constraints and/or costs in the MPC scheme. In particular, we extend recent results obtained in a discrete time setting to the continuous time domain. To this end, so called swaps and replacements are introduced in order to validate a growth condition on the value function and, thus, to rigorously prove asymptotic stability of the MPC closed loop for nonholonomic robots.

Regulation of Differential Drive Robots using Continuous Time MPC without Stabilizing Constraints or Costs

Zanon M;
2015-01-01

Abstract

In this paper, model predictive control (MPC) of differential drive robots is considered. Here, we solve the set point stabilization problem without incorporating stabilizing constraints and/or costs in the MPC scheme. In particular, we extend recent results obtained in a discrete time setting to the continuous time domain. To this end, so called swaps and replacements are introduced in order to validate a growth condition on the value function and, thus, to rigorously prove asymptotic stability of the MPC closed loop for nonholonomic robots.
File in questo prodotto:
File Dimensione Formato  
regulation_of_dd_robots.pdf

non disponibili

Licenza: Non specificato
Dimensione 589.54 kB
Formato Adobe PDF
589.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/7008
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
social impact