The idea of Airborne Wind Energy (AWE) is to generate power by flying a tethered airfoil across the windflow. Tethered flight is a fast, strongly nonlinear, unstable and constrained process, motivating control approaches based on fast Nonlinear Model Predictive Control (NMPC) and state estimation approaches based on Moving Horizon Estimation (MHE). In particular, the start-up phase of AWE systems is an involved procedure, and starting and landing using NMPC has not been investigated yet. In this paper, a control strategy for starting-up AWE systems is proposed, based on a rotating carousel that is currently built at the KU Leuven. A computationally efficient 6-DOF control model for a small-scale, rigid airfoil is presented. We present and investigate a control scheme based on receding-horizon Nonlinear Model Predictive Control to track reference trajectories and Moving Horizon Estimation to estimate the actual system state and parameters. The MHE shceme is able to estimate also the wind speed, given no direct wind measurement.

Rotational start-up of tethered airplanes based on nonlinear MPC and MHE

Zanon M;
2013-01-01

Abstract

The idea of Airborne Wind Energy (AWE) is to generate power by flying a tethered airfoil across the windflow. Tethered flight is a fast, strongly nonlinear, unstable and constrained process, motivating control approaches based on fast Nonlinear Model Predictive Control (NMPC) and state estimation approaches based on Moving Horizon Estimation (MHE). In particular, the start-up phase of AWE systems is an involved procedure, and starting and landing using NMPC has not been investigated yet. In this paper, a control strategy for starting-up AWE systems is proposed, based on a rotating carousel that is currently built at the KU Leuven. A computationally efficient 6-DOF control model for a small-scale, rigid airfoil is presented. We present and investigate a control scheme based on receding-horizon Nonlinear Model Predictive Control to track reference trajectories and Moving Horizon Estimation to estimate the actual system state and parameters. The MHE shceme is able to estimate also the wind speed, given no direct wind measurement.
2013
978-3-033-03962-9
fast NMPC and MHE; flight control; trajectory tracking
File in questo prodotto:
File Dimensione Formato  
rotational_startup.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/7092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
social impact