We address the problem of real-time obstacle avoidance on low-friction road surfaces using spatial Nonlinear Model Predictive Control (NMPC). We use a nonlinear four-wheel vehicle dynamics model that includes load transfer. To overcome the computational difficulties we propose to use the ACADO Code Generation tool which generates NMPC algorithms based on the real-time iteration scheme for dynamic optimization. The exported plain C code is tailored to the model dynamics, resulting in faster run-times in effort for real-time feasibility. The advantages of the proposed method are shown through simulation.
An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance of ground vehicles
Zanon M;
2013-01-01
Abstract
We address the problem of real-time obstacle avoidance on low-friction road surfaces using spatial Nonlinear Model Predictive Control (NMPC). We use a nonlinear four-wheel vehicle dynamics model that includes load transfer. To overcome the computational difficulties we propose to use the ACADO Code Generation tool which generates NMPC algorithms based on the real-time iteration scheme for dynamic optimization. The exported plain C code is tailored to the model dynamics, resulting in faster run-times in effort for real-time feasibility. The advantages of the proposed method are shown through simulation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
autogenerated_nmpc.pdf
non disponibili
Licenza:
Non specificato
Dimensione
434.21 kB
Formato
Adobe PDF
|
434.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.