Traditional parameter estimation techniques deliver estimates for a given set of parameters, but do not in general provide an estimate of the parameter variability for systems with time-varying parameters. Accurate knowledge of the parameter variability becomes crucial in many contexts, e.g. robust control techniques. This paper proposes a method for joint parameter and variability estimation (PVE) which is based on optimizing a convex cost function subject to a linear matrix inequality (LMI) constraint. The method is described and compared to the Least Squares (LSQ) method for a linear AutoRegressive eXogenous (ARX) model with ellipsoidal parameter variability. The two techniques have been tested numerically in a simulation scenario. Simulation results indicate that PVE is more precise at characterizing the variability of estimated parameters.

Estimation of uncertain ARX models with ellipsoidal parameter variability

Zanon M
2015-01-01

Abstract

Traditional parameter estimation techniques deliver estimates for a given set of parameters, but do not in general provide an estimate of the parameter variability for systems with time-varying parameters. Accurate knowledge of the parameter variability becomes crucial in many contexts, e.g. robust control techniques. This paper proposes a method for joint parameter and variability estimation (PVE) which is based on optimizing a convex cost function subject to a linear matrix inequality (LMI) constraint. The method is described and compared to the Least Squares (LSQ) method for a linear AutoRegressive eXogenous (ARX) model with ellipsoidal parameter variability. The two techniques have been tested numerically in a simulation scenario. Simulation results indicate that PVE is more precise at characterizing the variability of estimated parameters.
2015
978-395242693-7
File in questo prodotto:
File Dimensione Formato  
estimation_arx_variability.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/7204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact