We take inspiration from the Modern Portfolio Theory introduced by Markowitz to propose a simplified strategy for the portfolio management of renewable energy sources based on Gaussian fluctuations with tunable correlations. By analyzing the impact of production fluctuations, we show how – depending on the sources' temporal correlation patterns – a careful geographical allocation of different types of renewal energy sources can reduce both the energy needs for balancing the power system and its uncertainty. The proposed strategy can be easily integrated in a decision support system for the planning of renewable energy sources. Therefore, providing policy/decision makers with an additional tool. We test our strategy on a set of case studies including a real-case based on literature data for solar and wind sources, and discuss how to extend the computation to non-Gaussian sources. The paper shows that in the Markowitz framework an efficient trade-off between production and fluctuations can be easily achieved, and that such framework also leads to important considerations on energy security. In perspective, analysis of time series together with such enriched frameworks would allow for the analysis of multiple realistic renewable generation scenarios helping decisions on the optimal size and spatial allocation of future energy storage facilities.

We take inspiration from the Modern Portfolio Theory introduced by Markowitz to propose a simplified strategy for the portfolio management of renewable energy sources based on Gaussian fluctuations with tunable correlations. By analyzing the impact of production fluctuations, we show how – depending on the sources’ temporal correlation patterns – a careful geographical allocation of different types of renewal energy sources can reduce both the energy needs for balancing the power system and its uncertainty. The proposed strategy can be easily integrated in a decision support system for the planning of renewable energy sources. Therefore, providing policy/decision makers with an additional tool. We test our strategy on a set of case studies including a real-case based on literature data for solar and wind sources, and discuss how to extend the computation to non-Gaussian sources. The paper shows that in the Markowitz framework an efficient trade-off between production and fluctuations can be easily achieved, and that such framework also leads to important considerations on energy security. In perspective, analysis of time series together with such enriched frameworks would allow for the analysis of multiple realistic renewable generation scenarios helping decisions on the optimal size and spatial allocation of future energy storage facilities.

Portfolio analysis and geographical allocation of renewable sources: A stochastic approach

Facchini, Angelo;
2019-01-01

Abstract

We take inspiration from the Modern Portfolio Theory introduced by Markowitz to propose a simplified strategy for the portfolio management of renewable energy sources based on Gaussian fluctuations with tunable correlations. By analyzing the impact of production fluctuations, we show how – depending on the sources’ temporal correlation patterns – a careful geographical allocation of different types of renewal energy sources can reduce both the energy needs for balancing the power system and its uncertainty. The proposed strategy can be easily integrated in a decision support system for the planning of renewable energy sources. Therefore, providing policy/decision makers with an additional tool. We test our strategy on a set of case studies including a real-case based on literature data for solar and wind sources, and discuss how to extend the computation to non-Gaussian sources. The paper shows that in the Markowitz framework an efficient trade-off between production and fluctuations can be easily achieved, and that such framework also leads to important considerations on energy security. In perspective, analysis of time series together with such enriched frameworks would allow for the analysis of multiple realistic renewable generation scenarios helping decisions on the optimal size and spatial allocation of future energy storage facilities.
2019
We take inspiration from the Modern Portfolio Theory introduced by Markowitz to propose a simplified strategy for the portfolio management of renewable energy sources based on Gaussian fluctuations with tunable correlations. By analyzing the impact of production fluctuations, we show how – depending on the sources' temporal correlation patterns – a careful geographical allocation of different types of renewal energy sources can reduce both the energy needs for balancing the power system and its uncertainty. The proposed strategy can be easily integrated in a decision support system for the planning of renewable energy sources. Therefore, providing policy/decision makers with an additional tool. We test our strategy on a set of case studies including a real-case based on literature data for solar and wind sources, and discuss how to extend the computation to non-Gaussian sources. The paper shows that in the Markowitz framework an efficient trade-off between production and fluctuations can be easily achieved, and that such framework also leads to important considerations on energy security. In perspective, analysis of time series together with such enriched frameworks would allow for the analysis of multiple realistic renewable generation scenarios helping decisions on the optimal size and spatial allocation of future energy storage facilities.
Modern Portfolio Theory; Renewable energy sources
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0301421518306888-main.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza
Dimensione 396.76 kB
Formato Adobe PDF
396.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2019 - ENPOL - Portfolio Allocation.pdf

non disponibili

Licenza: Nessuna licenza
Dimensione 396.21 kB
Formato Adobe PDF
396.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/11617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
social impact