We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss function to determine which set of model parameters is active at each data point. The framework is quite general and encompasses popular classes of models, such as hidden Markov models and piecewise affine models. The shape of the chosen loss functions to minimize determines the shape of the resulting jump model
Fitting Jump Models
A. Bemporad;V. Breschi;
2018-01-01
Abstract
We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss function to determine which set of model parameters is active at each data point. The framework is quite general and encompasses popular classes of models, such as hidden Markov models and piecewise affine models. The shape of the chosen loss functions to minimize determines the shape of the resulting jump modelFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
automatica-jump_models.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Nessuna licenza
Dimensione
895.8 kB
Formato
Adobe PDF
|
895.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1711.09220.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
743.26 kB
Formato
Adobe PDF
|
743.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.