We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss function to determine which set of model parameters is active at each data point. The framework is quite general and encompasses popular classes of models, such as hidden Markov models and piecewise affine models. The shape of the chosen loss functions to minimize determines the shape of the resulting jump model

Fitting Jump Models

A. Bemporad;V. Breschi;
2018-01-01

Abstract

We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss function to determine which set of model parameters is active at each data point. The framework is quite general and encompasses popular classes of models, such as hidden Markov models and piecewise affine models. The shape of the chosen loss functions to minimize determines the shape of the resulting jump model
2018
Model regression; Mode estimation; Jump models; Hidden Markov models; Piecewise affine models
File in questo prodotto:
File Dimensione Formato  
automatica-jump_models.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza
Dimensione 895.8 kB
Formato Adobe PDF
895.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1711.09220.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 743.26 kB
Formato Adobe PDF
743.26 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/13267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
social impact