In this paper we propose a lightweight neural network architecture that is able to learn the binary components of the optimal solution of a class of multiparametric mixed-integer quadratic programming (MIQP) problems, such as those that arise from hybrid model predictive control formulations. The predictor provides a binary warm-start to a specifically designed branch and bound (B&B) algorithm to quickly discover an integer-feasible solution of the given MIQP, with the aim of reducing the overall solution time required to find the global optimal solution on line.

Learning explicit binary warm starts for mixed-integer programming

D. Masti;A. Bemporad
2019-01-01

Abstract

In this paper we propose a lightweight neural network architecture that is able to learn the binary components of the optimal solution of a class of multiparametric mixed-integer quadratic programming (MIQP) problems, such as those that arise from hybrid model predictive control formulations. The predictor provides a binary warm-start to a specifically designed branch and bound (B&B) algorithm to quickly discover an integer-feasible solution of the given MIQP, with the aim of reducing the overall solution time required to find the global optimal solution on line.
2019
978-3-907144-00-8
File in questo prodotto:
File Dimensione Formato  
08795808.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza
Dimensione 266.85 kB
Formato Adobe PDF
266.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ecc19-binary-warmstart.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 229.65 kB
Formato Adobe PDF
229.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/13279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
social impact