Functional connectivity (FC) metrics describe brain inter-regional interactions and may complement information provided by common power-based analyses. Here we investigated whether the FC-metrics weighted Phase Lag Index (wPLI) and weighted Symbolic Mutual Information (wSMI) may unveil functional differences across four stages of vigilance – wakefulness (W), NREM-N2, NREM-N3 and REM sleep – with respect to each other and to power-based features. Moreover, we explored their possible contribution in identifying differences between stages characterized by distinct levels of consciousness (REM+W vs. N2+N3) or sensory disconnection (REM vs. W). Overnight sleep and resting-state wakefulness recordings from 24 healthy participants (27±6yrs, 13F) were analysed to extract power and FC-based features in six classical frequency bands. Cross-validated linear discriminant analyses (LDA) were applied to investigate the ability of extracted features to discriminate i) the four vigilance stages, ii) W+REM vs. N2+N3, and iii) W vs. REM. For the four-way vigilance stages classification, combining features based on power and both connectivity metrics significantly increased accuracy relative to considering only power, wPLI or wSMI features. Delta-power and connectivity (0.5-4Hz) represented the most relevant features for all the tested classifications, in line with a possible involvement of slow waves in consciousness and sensory disconnection. Sigma-FC, but not sigma-power (12-16Hz), was found to strongly contribute to the differentiation between states characterized by higher (W+REM) and lower (N2+N3) probabilities of conscious experiences. Finally, alpha-FC resulted as the most relevant FC-feature for distinguishing among wakefulness and REM sleep and may thus reflect the level of disconnection from the external environment.
Cross-participant prediction of vigilance stages through the combined use of wPLI and wSMI EEG functional connectivity metrics
Laura Sophie Imperatori
Formal Analysis
;Monica BettaMethodology
;Emiliano RicciardiSupervision
;Giulio Bernardi
Conceptualization
2021-01-01
Abstract
Functional connectivity (FC) metrics describe brain inter-regional interactions and may complement information provided by common power-based analyses. Here we investigated whether the FC-metrics weighted Phase Lag Index (wPLI) and weighted Symbolic Mutual Information (wSMI) may unveil functional differences across four stages of vigilance – wakefulness (W), NREM-N2, NREM-N3 and REM sleep – with respect to each other and to power-based features. Moreover, we explored their possible contribution in identifying differences between stages characterized by distinct levels of consciousness (REM+W vs. N2+N3) or sensory disconnection (REM vs. W). Overnight sleep and resting-state wakefulness recordings from 24 healthy participants (27±6yrs, 13F) were analysed to extract power and FC-based features in six classical frequency bands. Cross-validated linear discriminant analyses (LDA) were applied to investigate the ability of extracted features to discriminate i) the four vigilance stages, ii) W+REM vs. N2+N3, and iii) W vs. REM. For the four-way vigilance stages classification, combining features based on power and both connectivity metrics significantly increased accuracy relative to considering only power, wPLI or wSMI features. Delta-power and connectivity (0.5-4Hz) represented the most relevant features for all the tested classifications, in line with a possible involvement of slow waves in consciousness and sensory disconnection. Sigma-FC, but not sigma-power (12-16Hz), was found to strongly contribute to the differentiation between states characterized by higher (W+REM) and lower (N2+N3) probabilities of conscious experiences. Finally, alpha-FC resulted as the most relevant FC-feature for distinguishing among wakefulness and REM sleep and may thus reflect the level of disconnection from the external environment.File | Dimensione | Formato | |
---|---|---|---|
zsaa247.pdf
Open Access dal 02/12/2021
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
Nessuna licenza
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.