This article presents a two-stage algorithm for piecewise affine (PWA) regression. In the first stage, a moving horizon strategy is employed to simultaneously estimate the model parameters and to classify the training data by solving a small-size mixed-integer quadratic programming problem. In the second stage, linear multicategory separation methods are used to partition the regressor space. The framework of PWA regression is adapted to the identification of PWA AutoRegressive with eXogenous input (PWARX) models as well as linear parameter-varying (LPV) models. The performance of the proposed algorithm is demonstrated on an academic example and on two benchmark experimental case studies. The first experimental example concerns modeling the placement process in a pick-and-place machine, while the second one consists in the identification of an LPV model describing the input-output relationship of an electronic bandpass filter with time-varying resonant frequency.

Identification of hybrid and linear parameter-varying models via piecewise affine regression using mixed integer programming

Bemporad A.
2020-01-01

Abstract

This article presents a two-stage algorithm for piecewise affine (PWA) regression. In the first stage, a moving horizon strategy is employed to simultaneously estimate the model parameters and to classify the training data by solving a small-size mixed-integer quadratic programming problem. In the second stage, linear multicategory separation methods are used to partition the regressor space. The framework of PWA regression is adapted to the identification of PWA AutoRegressive with eXogenous input (PWARX) models as well as linear parameter-varying (LPV) models. The performance of the proposed algorithm is demonstrated on an academic example and on two benchmark experimental case studies. The first experimental example concerns modeling the placement process in a pick-and-place machine, while the second one consists in the identification of an LPV model describing the input-output relationship of an electronic bandpass filter with time-varying resonant frequency.
2020
hybrid system identification
linear parameter-varying models
mixed integer programming
PWA regression
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/17215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
social impact