For all its successes, Reinforcement Learning (RL) still struggles to deliver formal guarantees on the closed-loop behavior of the learned policy. Among other things, guaranteeing the safety of RL with respect to safety-critical systems is a very active research topic. Some recent contributions propose to rely on projections of the inputs delivered by the learned policy into a safe set, ensuring that the system safety is never jeopardized. Unfortunately, it is unclear whether this operation can be performed without disrupting the learning process. This paper addresses this issue. The problem is analysed in the context of Q-learning and policy gradient techniques. We show that the projection approach is generally disruptive in the context of Q-learning though a simple alternative solves the issue, while simple corrections can be used in the context of policy gradient methods in order to ensure that the policy gradients are unbiased. The proposed results extend to safe projections based on robust MPC techniques.
Safe reinforcement learning via projection on a safe set: How to achieve optimality?
Zanon M.;Bemporad A.
2020-01-01
Abstract
For all its successes, Reinforcement Learning (RL) still struggles to deliver formal guarantees on the closed-loop behavior of the learned policy. Among other things, guaranteeing the safety of RL with respect to safety-critical systems is a very active research topic. Some recent contributions propose to rely on projections of the inputs delivered by the learned policy into a safe set, ensuring that the system safety is never jeopardized. Unfortunately, it is unclear whether this operation can be performed without disrupting the learning process. This paper addresses this issue. The problem is analysed in the context of Q-learning and policy gradient techniques. We show that the projection approach is generally disruptive in the context of Q-learning though a simple alternative solves the issue, while simple corrections can be used in the context of policy gradient methods in order to ensure that the policy gradients are unbiased. The proposed results extend to safe projections based on robust MPC techniques.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2405896320329360-main.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Nessuna licenza
Dimensione
623.84 kB
Formato
Adobe PDF
|
623.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
SafeRLProjectionFinal.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
463.34 kB
Formato
Adobe PDF
|
463.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.