For linearly constrained least-squares problems that depend on a vector of parameters, this paper proposes techniques for reducing the number of involved optimization variables. After first eliminating equality constraints in a numerically robust way by QR factorization, we propose a technique based on singular value decomposition (SVD) and unsupervised learning, that we call K-SVD, and neural classifiers to automatically partition the set of parameter vectors in K nonlinear regions in which the original problem is approximated by using a smaller set of variables. For the special case of parametric constrained least-squares problems that arise from model predictive control (MPC) formulations, we propose a novel and very efficient QR factorization method for equality constraint elimination. Together with SVD or K-SVD, the method provides a numerically robust alternative to standard condensing and move blocking, and to other complexity reduction methods for MPC based on basis functions. We show the good performance of the proposed techniques in numerical tests and in a linearized MPC problem of a nonlinear benchmark process.

Variable Elimination in Model Predictive Control Based on K-SVD and QR Factorization

Bemporad A.;
2021

Abstract

For linearly constrained least-squares problems that depend on a vector of parameters, this paper proposes techniques for reducing the number of involved optimization variables. After first eliminating equality constraints in a numerically robust way by QR factorization, we propose a technique based on singular value decomposition (SVD) and unsupervised learning, that we call K-SVD, and neural classifiers to automatically partition the set of parameter vectors in K nonlinear regions in which the original problem is approximated by using a smaller set of variables. For the special case of parametric constrained least-squares problems that arise from model predictive control (MPC) formulations, we propose a novel and very efficient QR factorization method for equality constraint elimination. Together with SVD or K-SVD, the method provides a numerically robust alternative to standard condensing and move blocking, and to other complexity reduction methods for MPC based on basis functions. We show the good performance of the proposed techniques in numerical tests and in a linearized MPC problem of a nonlinear benchmark process.
Constrained least squares
Linear matrix inequalities
model predictive control
Optimization
Predictive control
Predictive models
Principal component analysis
singular value decomposition
Standards
unsupervised learning
Unsupervised learning
variable elimination
File in questo prodotto:
File Dimensione Formato  
Variable_Elimination_in_Model_Predictive_Control_Based_on_K-SVD_and_QR_Factorization.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Nessuna licenza
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11771/20203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact