In Model Predictive Control (MPC) formulations of trajectory tracking problems, infeasible reference trajectories and a-priori unknown constraints can lead to cumbersome designs, aggressive tracking, and loss of recursive feasibility. This is the case, for example, in trajectory tracking applications for mobile systems in the presence of constraints which are not fully known a-priori. In this paper, we propose a new framework called Model Predictive Flexible trajectory Tracking Control (MPFTC), which relaxes the trajectory tracking requirement. Additionally, we accommodate recursive feasibility in the presence of a-priori unknown constraints, which might render the reference trajectory infeasible. In the proposed framework, constraint satisfaction is guaranteed at all times while the reference trajectory is tracked as good as constraint satisfaction allows, thus simplifying the controller design and reducing possibly aggressive tracking behavior. The proposed framework is illustrated with three numerical examples.
Safe Trajectory Tracking in Uncertain Environments
Mario Zanon
2023-01-01
Abstract
In Model Predictive Control (MPC) formulations of trajectory tracking problems, infeasible reference trajectories and a-priori unknown constraints can lead to cumbersome designs, aggressive tracking, and loss of recursive feasibility. This is the case, for example, in trajectory tracking applications for mobile systems in the presence of constraints which are not fully known a-priori. In this paper, we propose a new framework called Model Predictive Flexible trajectory Tracking Control (MPFTC), which relaxes the trajectory tracking requirement. Additionally, we accommodate recursive feasibility in the presence of a-priori unknown constraints, which might render the reference trajectory infeasible. In the proposed framework, constraint satisfaction is guaranteed at all times while the reference trajectory is tracked as good as constraint satisfaction allows, thus simplifying the controller design and reducing possibly aggressive tracking behavior. The proposed framework is illustrated with three numerical examples.File | Dimensione | Formato | |
---|---|---|---|
root.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
Safe_Trajectory_Tracking_in_Uncertain_Environments.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
93.76 kB
Formato
Adobe PDF
|
93.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.