We consider potential games with mixed-integer variables, for which we propose two distributed, proximallike equilibrium seeking algorithms. Specifically, we focus on two scenarios: i) the underlying game is generalized ordinal and the agents update through iterations by choosing an exact optimal strategy; ii) the game admits an exact potential and the agents adopt approximated optimal responses. By exploiting the properties of integer-compatible regularization functions used as penalty terms, we show that both algorithms converge to either an exact or an ϵ-approximate equilibrium. We corroborate our findings on a numerical instance of a Cournot oligopoly model.

Proximal-like algorithms for equilibrium seeking in mixed-integer Nash equilibrium problems

Fabiani, Filippo;
2022-01-01

Abstract

We consider potential games with mixed-integer variables, for which we propose two distributed, proximallike equilibrium seeking algorithms. Specifically, we focus on two scenarios: i) the underlying game is generalized ordinal and the agents update through iterations by choosing an exact optimal strategy; ii) the game admits an exact potential and the agents adopt approximated optimal responses. By exploiting the properties of integer-compatible regularization functions used as penalty terms, we show that both algorithms converge to either an exact or an ϵ-approximate equilibrium. We corroborate our findings on a numerical instance of a Cournot oligopoly model.
2022
978-1-6654-6761-2
Computational modeling, Measurement uncertainty, Stochastic processes, Games, Approximation algorithms, Nash equilibrium, Cost function
File in questo prodotto:
File Dimensione Formato  
Proximal-like_algorithms_for_equilibrium_seeking_in_mixed-integer_Nash_equilibrium_problems.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2203.15410.pdf

accesso aperto

Licenza: Creative commons
Dimensione 597.15 kB
Formato Adobe PDF
597.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/25782
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact