Lakatos’ (Lakatos, 1976) model of mathematical conceptual change has been criticized for neglecting the diversity of dynamics exhibited by mathematical concepts. In this work, I will propose a pluralist approach to mathematical change that re-conceptualizes Lakatos’ model of proofs and refutations as an ideal dynamic that mathematical concepts can exhibit to different degrees with respect to multiple dimensions. Drawing inspiration from Godfrey-Smith’s (Godfrey-Smith, 2009) population-based Darwinism, my proposal will be structured around the notion of a conceptual population, the opposition between Lakatosian and Euclidean populations, and the spatial tools of the Lakatosian space. I will show how my approach is able to account for the variety of dynamics exhibited by mathematical concepts with the help of three case studies.

Lakatosian and Euclidean populations: a pluralist approach to conceptual change in mathematics

De Benedetto M.
2023-01-01

Abstract

Lakatos’ (Lakatos, 1976) model of mathematical conceptual change has been criticized for neglecting the diversity of dynamics exhibited by mathematical concepts. In this work, I will propose a pluralist approach to mathematical change that re-conceptualizes Lakatos’ model of proofs and refutations as an ideal dynamic that mathematical concepts can exhibit to different degrees with respect to multiple dimensions. Drawing inspiration from Godfrey-Smith’s (Godfrey-Smith, 2009) population-based Darwinism, my proposal will be structured around the notion of a conceptual population, the opposition between Lakatosian and Euclidean populations, and the spatial tools of the Lakatosian space. I will show how my approach is able to account for the variety of dynamics exhibited by mathematical concepts with the help of three case studies.
2023
Conceptual change in science
Conceptual populations
Godfrey-Smith
Lakatos
Lakatosian space
Mathematical change
File in questo prodotto:
File Dimensione Formato  
De Benedetto (2023) - EJPS.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 527.97 kB
Formato Adobe PDF
527.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/32339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact