Despite the proven advantages of scenario-based stochastic model predictive control for the operational control of water networks, its applicability is limited by its considerable computational footprint. In this paper, we fully exploit the structure of these problems and solve them using a proximal gradient algorithm parallelizing the involved operations. The proposed methodology is applied and validated on a case study: the water network of the city of Barcelona.

GPU-accelerated stochastic predictive control of drinking water networks

Bemporad A;
2018-01-01

Abstract

Despite the proven advantages of scenario-based stochastic model predictive control for the operational control of water networks, its applicability is limited by its considerable computational footprint. In this paper, we fully exploit the structure of these problems and solve them using a proximal gradient algorithm parallelizing the involved operations. The proposed methodology is applied and validated on a case study: the water network of the city of Barcelona.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/3672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
social impact