In this paper, we propose a fast optimisation algorithm for approximately minimising convex quadratic functions over the intersection of affine and separable constraints (i.e. the Cartesian product of possibly nonconvex real sets). This problem class contains many NP-hard problems such as mixed-integer quadratic programming. Our heuristic is based on a variation of the alternating direction method of multipliers (ADMM), an algorithm for solving convex optimisation problems. We discuss the favourable computational aspects of our algorithm, which allow it to run quickly even on very modest computational platforms such as embedded processors. We give several examples for which an approximate solution should be found very quickly, such as management of a hybrid-electric vehicle drivetrain and control of switched-mode power converters. Our numerical experiments suggest that our method is very effective in finding a feasible point with small objective value; indeed, we see that in many cases, it finds the global solution.
A simple effective heuristic for embedded mixed-integer quadratic programming
Bemporad A
2017-01-01
Abstract
In this paper, we propose a fast optimisation algorithm for approximately minimising convex quadratic functions over the intersection of affine and separable constraints (i.e. the Cartesian product of possibly nonconvex real sets). This problem class contains many NP-hard problems such as mixed-integer quadratic programming. Our heuristic is based on a variation of the alternating direction method of multipliers (ADMM), an algorithm for solving convex optimisation problems. We discuss the favourable computational aspects of our algorithm, which allow it to run quickly even on very modest computational platforms such as embedded processors. We give several examples for which an approximate solution should be found very quickly, such as management of a hybrid-electric vehicle drivetrain and control of switched-mode power converters. Our numerical experiments suggest that our method is very effective in finding a feasible point with small objective value; indeed, we see that in many cases, it finds the global solution.File | Dimensione | Formato | |
---|---|---|---|
1509.08416.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
223.84 kB
Formato
Adobe PDF
|
223.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.