This paper proposes a method for learning optimal state estimators from input/output data for linear discrete-time stochastic systems. We show that this problem can be expressed in the reinforcement learning framework, suitably adapted to the peculiar problem structure. In particular, we introduce the specific Bellman equation for the state estimation problem and use temporal differences to solve it. We show in simulations that the resulting data-driven method for state estimation converges to the optimal observer.
Linear Observer Learning by Temporal Difference
Menchetti, Stefano;Zanon, Mario;Bemporad, Alberto
2022-01-01
Abstract
This paper proposes a method for learning optimal state estimators from input/output data for linear discrete-time stochastic systems. We show that this problem can be expressed in the reinforcement learning framework, suitably adapted to the peculiar problem structure. In particular, we introduce the specific Bellman equation for the state estimation problem and use temporal differences to solve it. We show in simulations that the resulting data-driven method for state estimation converges to the optimal observer.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FinalVersion.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
327.04 kB
Formato
Adobe PDF
|
327.04 kB | Adobe PDF | Visualizza/Apri |
Linear_Observer_Learning_by_Temporal_Difference.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.