We provide out-of-sample certificates on the controlled invariance property of a given set with respect to a class of black-box linear systems generated by a possibly inexact quantification of some parameters in the state-space matrices. By exploiting a set of realizations of those undetermined parameters, verifying the controlled invariance property of the given set amounts to a linear program, whose feasibility allows us to establish an a-posteriori probabilistic certificate on the controlled invariance property of such a set with respect to the unknown linear time-invariant dynamics. We apply this framework to the control of a networked system with unknown weighted graph.

Probabilistic Stabilizability Certificates for a Class of Black-Box Linear Systems

Fabiani, Filippo;
2022-01-01

Abstract

We provide out-of-sample certificates on the controlled invariance property of a given set with respect to a class of black-box linear systems generated by a possibly inexact quantification of some parameters in the state-space matrices. By exploiting a set of realizations of those undetermined parameters, verifying the controlled invariance property of the given set amounts to a linear program, whose feasibility allows us to establish an a-posteriori probabilistic certificate on the controlled invariance property of such a set with respect to the unknown linear time-invariant dynamics. We apply this framework to the control of a networked system with unknown weighted graph.
File in questo prodotto:
File Dimensione Formato  
Probabilistic_Stabilizability_Certificates_for_a_Class_of_Black-Box_Linear_Systems.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 513.24 kB
Formato Adobe PDF
513.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2103.02905.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 273.77 kB
Formato Adobe PDF
273.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/25779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact