This paper proposes a construction-free algorithm for solving linear MPC problems based on autoregressive with exogenous terms (ARX) input-output models. The solution algorithm relies on a coordinate-descent augmented Lagrangian (CDAL) method previously proposed by the authors, which we adapt here to exploit the special structure of ARX-based MPC. The CDAL-ARX algorithm enjoys the construction-free feature, in that it avoids explicitly constructing the quadratic programming (QP) problem associated with MPC, which would eliminate construction cost when the ARX model changes/adapts online. For example, the ARX model parameters are dependent on linear parameter-varying (LPV) scheduling signals, or recursively adapted from streaming input-output data with cheap computation cost, which make the ARX model widely used in adaptive control. Moreover, the implementation of the resulting CDAL-ARX algorithm is matrix-free and library-free, and hence amenable for deployment in industrial embedded platforms. We show the efficiency of CDAL-ARX in two numerical examples, also in comparison with MPC implementations based on other general-purpose quadratic programming solvers. Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
A construction-free coordinate-descent augmented-Lagrangian method for embedded linear MPC based on ARX models
L. Wu;A. Bemporad
2023-01-01
Abstract
This paper proposes a construction-free algorithm for solving linear MPC problems based on autoregressive with exogenous terms (ARX) input-output models. The solution algorithm relies on a coordinate-descent augmented Lagrangian (CDAL) method previously proposed by the authors, which we adapt here to exploit the special structure of ARX-based MPC. The CDAL-ARX algorithm enjoys the construction-free feature, in that it avoids explicitly constructing the quadratic programming (QP) problem associated with MPC, which would eliminate construction cost when the ARX model changes/adapts online. For example, the ARX model parameters are dependent on linear parameter-varying (LPV) scheduling signals, or recursively adapted from streaming input-output data with cheap computation cost, which make the ARX model widely used in adaptive control. Moreover, the implementation of the resulting CDAL-ARX algorithm is matrix-free and library-free, and hence amenable for deployment in industrial embedded platforms. We show the efficiency of CDAL-ARX in two numerical examples, also in comparison with MPC implementations based on other general-purpose quadratic programming solvers. Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2405896323005864-main.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
453.15 kB
Formato
Adobe PDF
|
453.15 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.