To identify a stationary action profile for a population of competitive agents, each executing private strategies, we introduce a novel active-learning scheme where a centralized external observer (or entity) can probe the agents' reactions and recursively update simple local parametric estimates of the action-reaction mappings. Under very general working assumptions (not even assuming that a stationary profile exists), sufficient conditions are established to assess the asymptotic properties of the proposed active learning methodology so that, if the parameters characterizing the action-reaction mappings converge, a stationary action profile is achieved. Such conditions hence act also as certificates for the existence of such a profile. Extensive numerical simulations involving typical competitive multi-agent control and decision-making problems illustrate the practical effectiveness of the proposed learning-based approach.

An active learning method for solving competitive multi-agent decision-making and control problems

Filippo Fabiani
;
Alberto Bemporad
2025-01-01

Abstract

To identify a stationary action profile for a population of competitive agents, each executing private strategies, we introduce a novel active-learning scheme where a centralized external observer (or entity) can probe the agents' reactions and recursively update simple local parametric estimates of the action-reaction mappings. Under very general working assumptions (not even assuming that a stationary profile exists), sufficient conditions are established to assess the asymptotic properties of the proposed active learning methodology so that, if the parameters characterizing the action-reaction mappings converge, a stationary action profile is achieved. Such conditions hence act also as certificates for the existence of such a profile. Extensive numerical simulations involving typical competitive multi-agent control and decision-making problems illustrate the practical effectiveness of the proposed learning-based approach.
File in questo prodotto:
File Dimensione Formato  
An_Active_Learning_Method_for_Solving_Competitive_Multi-Agent_Decision-Making_and_Control_Problems.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/31118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact