We propose an inexact proximal augmented Lagrangian method (P-ALM) for nonconvex structured optimization problems. The proposed method features an easily implementable rule not only for updating the penalty parameters, but also for adaptively tuning the proximal term. It allows the penalty parameter to grow rapidly in the early stages to speed up progress, while ameliorating the issue of ill-conditioning in later iterations, a well-known drawback of the traditional approach of linearly increasing the penalty parameters. A key element in our analysis lies in the observation that the augmented Lagrangian can be controlled effectively along the iterates, provided an initial feasible point is available. Our analysis, while simple, provides a new theoretical perspective about P-ALM and, as a by-product, results in similar convergence properties for its non-proximal variant, the classical augmented Lagrangian method (ALM). Numerical experiments, including convex and nonconvex problem instances, demonstrate the effectiveness of our approach.

A proximal augmented Lagrangian method for nonconvex optimization with equality and inequality constraints

Adeoye Adeyemi D.;Latafat Puya;Bemporad Alberto
2025

Abstract

We propose an inexact proximal augmented Lagrangian method (P-ALM) for nonconvex structured optimization problems. The proposed method features an easily implementable rule not only for updating the penalty parameters, but also for adaptively tuning the proximal term. It allows the penalty parameter to grow rapidly in the early stages to speed up progress, while ameliorating the issue of ill-conditioning in later iterations, a well-known drawback of the traditional approach of linearly increasing the penalty parameters. A key element in our analysis lies in the observation that the augmented Lagrangian can be controlled effectively along the iterates, provided an initial feasible point is available. Our analysis, while simple, provides a new theoretical perspective about P-ALM and, as a by-product, results in similar convergence properties for its non-proximal variant, the classical augmented Lagrangian method (ALM). Numerical experiments, including convex and nonconvex problem instances, demonstrate the effectiveness of our approach.
2025
Augmented Lagrangian method, nonlinear programming, inexact proximal point algorithm, constrained optimization, KKT conditions
File in questo prodotto:
File Dimensione Formato  
2509.02894v1.pdf

accesso aperto

Descrizione: A proximal augmented Lagrangian method for nonconvex optimization with equality and inequality constraints
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/36338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact