This paper presents a method to identify an uncertain linear time-invariant (LTI) prediction model for tube-based Robust Model Predictive Control (RMPC). The uncertain model is determined from a given state-input dataset by formulating and solving a Semidefinite Programming problem (SDP), that also determines a static linear feedback gain and corresponding invariant sets satisfying the inclusions required to guarantee recursive feasibility and stability of the RMPC scheme, while minimizing an identification criterion. As demonstrated through an example, the proposed concurrent approach provides less conservative invariant sets than a sequential approach.

Data-driven synthesis of Robust Invariant Sets and Controllers

Mulagaleti, Sampath Kumar;Bemporad, Alberto;Zanon, Mario
2022

Abstract

This paper presents a method to identify an uncertain linear time-invariant (LTI) prediction model for tube-based Robust Model Predictive Control (RMPC). The uncertain model is determined from a given state-input dataset by formulating and solving a Semidefinite Programming problem (SDP), that also determines a static linear feedback gain and corresponding invariant sets satisfying the inclusions required to guarantee recursive feasibility and stability of the RMPC scheme, while minimizing an identification criterion. As demonstrated through an example, the proposed concurrent approach provides less conservative invariant sets than a sequential approach.
Economic indicators, Computational modeling, Linear systems, Symmetric matrices, Predictive models, Linear matrix inequalities, Uncertainty
File in questo prodotto:
File Dimensione Formato  
Data-driven_synthesis_of_Robust_Invariant_Sets_and_Controllers.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 674.99 kB
Formato Adobe PDF
674.99 kB Adobe PDF Visualizza/Apri
Data-Driven_Synthesis_of_Robust_Invariant_Sets_and_Controllers.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 659.2 kB
Formato Adobe PDF
659.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11771/19597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact